SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN
Academic Year 2019-20

Program:	B E - CIVIL ENGINEERING
Semester:	3
Course Code:	$18 \mathrm{CV}_{35}$
Course Title:	Basic Surveying
Credit /L-T-P:	$4 / 4-0-0$
Total Contact Hours:	50
Course Plan Author:	VINOD M

Academic Evaluation and Monitoring Cell
\#29, Hesaragatta Main Road, Chimney Hills
Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315
www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content 3
3. Course Material 4
4. Course Prerequisites 4
5. Content for Placement, Profession, HE and GATE. 4
B. OBE PARAMETERS 5
6. Course Outcomes 5
7. Course Applications 5
8. Mapping And Justification.
9. Articulation Matrix 6
10. Curricular Gap and Content 7
11. Content Beyond Syllabus 7
C. COURSE ASSESSMENT 7
12. Course Coverage 7
13. Continuous Internal Assessment (CIA) 8
D1. TEACHING PLAN - 1 8
Module - 1 8
Module - 2 9
E1. CIA EXAM - 1 10
a. Model Question Paper - 1 10
b. Assignment -1 10
D2. TEACHING PLAN - 2 11
Module - 3 11
Module - 4 12
E2. CIA EXAM - 2 13
a. Model Question Paper - 2 13
b. Assignment - 2 14
D3. TEACHING PLAN - 3 14
Module - 5 14
E3. CIA EXAM - 3 15
a. Model Question Paper - 3 15
b. Assignment - 3 16
F. EXAM PREPARATION 16
14. University Model Question Paper 16
15. SEE Important Questions 17
G. Content to Course Outcomes 19
16. TLPA Parameters 19
17. Concepts and Outcomes 20
Note : Remove "Table of Content" before including in CP BookEach Course Plan shall be printed and made into a book with cover pageBlooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL ENGINEERING
Semester:	3	Academic Year:	$2019-20$.
Course Title:	Basic Surveying.	Course Code:	15 CV35.
Credit / L-T-P:	$4 / 4$-0-0.	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours.	SEE Marks:	60 Marks
CIA Marks:	40 Marks.	Assignment	$1 /$ Module
Course Plan Author:	VINOD M.	Sign .	
Checked By:	MOHAN KT	Sign .	
CO Targets	65%	SEE Target:	60%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod ule	Content	Teaching Hours	Identified Module Concepts	Blooms Learning Levels
1	Definition of surveying, Objectives and importance of surveying. Classification of surveys. Principles of surveying. Units of measurements, Surveying Measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale, conventional symbols, topographic maps, map layout, Survey of India Map numbering systems. Measuring tape and types. Measurement using tapes, Taping on level ground and sloping ground. Errors and corrections in tape measurements, ranging of lines, direct and indirect methods of ranging, Electronic distance measurement, basic principle. Booking of tape survey work, Field book, entries, Conventional symbols, Obstacles in tape survey, Numerical	Introduction and importance of surveying	L2,L4	
problems.				

rule, area from co-ordinates, introduction to planimeter, digital planimeter. Measurement of volumes-trapezoidal and prismoidal formula.
Contours, Methods of contouring, Interpolation of contours, contour gradient, characteristics of contours and uses.
-

Total

d		and volume contouring	
$\mathbf{5 0}$	$\mathbf{-}$		

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

$\begin{gathered} \text { Modul } \\ \text { es } \end{gathered}$	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3,4 \\ 5 \end{gathered}$	B.C. Punmia, "Surveying Vol.1", Laxmi Publications pvt. Ltd., New Delhl 2009.	1,2,3,4,5	In Lib / In Dept
$\begin{gathered} 1,2,3,4 \\ 5 \\ \hline \end{gathered}$	Kanetkar T P and S V Kulkarni, Surveying and Leveling Part I, Pune Vidyarthi Griha Prakashan, 1988	1,2,3,4,5	In Lib/ In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	.S.K. Duggal, "Surveying Vol.1", Tata McGraw Hill Publishing Co. Ltd. New Delhi. - 2009.		In Lib/ In dept
	K.R. Arora, "Surveying Vol. 1" Standard Book House, New Delhi. - 2010		In Lib/ In dept
	R Subramanian, Surveying and Leveling, Second edition, Oxford University Press, New Delhi.		In Lib/ In dept
C	Concept Videos or Simulation for Understanding	-	-
C1	http://nptel.ac.in/courses.php?disciplinelD=111		
C2	http://wwww.khanacademy.org/		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5.
Students must have learnt the following Courses / Topics with described Content

Module s	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms

ules				Level
1				
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	$\begin{gathered} \text { Instr } \\ \text { Metho } \\ \text { d } \end{gathered}$	$\left\|\begin{array}{c} \text { Assessm } \\ \text { ent } \\ \text { Method } \end{array}\right\|$	Blooms Level
1	18cv35.1	Student should be able to understand the basics of surveying.	05	Introduction of basic instruments	Lecture	IA	Understand
1	18cv35.2	Student should be able to learn the techniques of survey instruments.	05	techniques	Lecture	IA	L2 Understand
2	18cv35.3	Student should be able to determine the measurement of horizontal distances.	05	Compass survey	Lecture	IA	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
2	18cv35.4	Student should be able to understand the practical applications of theodolite	05	Theodolite survey	Lecture	IA	L3 Apply
3	18cv35.5	Student should be able to understand the techniques of compass survey	05	Traverse survey	Lecture	IA	L2 Understand
3	18cv35.6	Student should be able to understand the methods of tacheometry survey	05	Tacheometry survey	Lecture	IA	L2 Understand
4	18cv35.7	Student should be able to Analise the different methods of leveling using dumpy level	05	leveling	Lecture	IA	L4 Analise
4	18cv35.8	Student should be able to Analise the detailed calculations of leveling by using dumpy level.	05	leveling	Lecture	IA	L4 Analise
5	18cv35.9	Student should be able to determine the areas and volume by using arithmetic equations.	05	Computation s of areas and volume	Lect	IA	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
5	18 cv 35.10	Student should be able to understand the spatial data and uses of contours.	05	contouring			$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
-	-	Total	10	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to . . .

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	To investigate the ground nature in surveying	CO 1	L 2
1	Principles and techniques of surveying can be apply before any constructions.	CO 2	L 2
2	Easy to measure the horizontal distances of any land.	CO 3	L 3
2	Theodolite survey gives the accuracy and precision of work.	CO 4	L 3
3	Compass can be used for detailed measurement of bearings and directions on the	CO 5	L 3

	fields.		
3	Easy to identify the directions of land by using compass.	CO	L 3
4	To get the knowledge of ground profile.	CO 7	L 2
4	Before any constructions we can apply methods of leveling.	CO 8	L 2
5	With help of arithmetic equations to calculate the areas and volume of all type of land.	CO 9	L 3
5	By using contours easy to determine the storage capacity of water bodies.	CO 10	L 4

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment’	-
	CO1	PO1	L2	Engineering knowledge of basics of surveying.	L2
	CO1	PO 2		Engineering knowledge of basics of surveying.	L2
	CO 2	PO1	L2	Engineering knowledge of technics of surveying instruments	L2
	CO 2	PO 2	L2	Analyses of problems on chain surveying	L3
	CO_{3}	PO1		Understanding the measurement of horizontal distances.	L3
	CO_{3}	PO 2	L5	Analyses of problems on horizontal distances	L4
	CO 4	PO1	L5	Understanding the practical applications of theodolite	L2
	CO 4	PO 2		Understanding the practical applications of theodolite	L2
	CO 5	PO1	L5	Engineering knowledge of techniques of compass surveying	L3
	CO 5	PO 2	L5	Analyses of problems on compass surveying	L4
	C06	PO1		Engineering knowledge of methods of tacheometry surveying	L2
	C06	PO 2	L5	Analyses of problems on tacheometric surveying	L2
	CO 7	PO1	L5	Engineering knowledge of different methods of leveling using dumpy level	L2
	CO 7	PO 2		Analyses of problems on leveling	L4
	C08	PO1	L5	Engineering knowledge of different methods of leveling using dumpy level	L3
	CO8	PO 2	L5	Analyses of problems on leveling	L4
	CO 9	PO1		Engineering knowledge of areas and volume by using arithmetic equations.	L3
	COg	PO 2	L5	Analyses of problems on areas and volume by using arithmetic equations.	L4
	CO10	PO1	L5	Understanding the knowledge of spatial data and uses of contours.	L3
	CO10	PO2		Understanding the knowledge of spatial data and uses of contours.	L3

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to . .		PO			$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO	$\begin{gathered} \hline \text { PO } \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	PO	PO	12	PS	$\begin{array}{\|l\|} \hline \mathrm{PS} \\ \mathrm{O} 2 \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$
1	17CV44.1	Student should be able to understand the basics of surveying.	2	1	-	-	-	-	-	-	-	-	-	-	L2			L2
1	17CV44.2	Student should be able to learn the techniques of survey instruments.	2	1	-	-	-	-	-	-	-	-	-	-	L3			L2
2	17CV44.3	Student should be able to determine the measurement of horizontal distances.	2	2	-	-	-	-	-	-	-	-	-	-	L3			L2
2	17CV44.4	Student should be able to understand the practical applications of theodolite	3	3	-	-	-	-	-	-	-	-	-	-	L2			L2
3	17CV44.5	Student should be able to	3	2	-	-	-	-	-	-	-	-	-	-	L3			L3

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title		No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	$\begin{array}{\|c} \text { Extra } \\ \text { Asg } \end{array}$	SEE		
1	Introduction and measurement of horizontal distances	10	2	-	-	1	-	2	CO1, CO2	L2
2	Measurement of directions and angles compass surveying Theodolite survey and instrument adjustment	10	2	-	-	1		2	CO3, CO4	L3
3	Traversing and Tacheometry	10	-	2	-	1	1	2	CO5, CO6	L3
4	Leveling	10	-	2	-	1	1	2	CO7, C08	L4
5	Areas and volumes contouring	10	-	1	3	1	1	2	CO9, CO10	L3
-	Total	50	4	5	3	5	3	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weighta ge in Marks	CO	Levels	Evaluation
CIA Exam - 1	40	CO1, CO2, CO3, CO4	CIA Exam - 1	CIA Exam - 1
CIA Exam - 2	40	CO5, CO6, CO7, C08	CIA Exam - 2	CIA Exam - 2
CIA Exam - 3	40	CO9, CO10	CIA Exam - 3	CIA Exam - 3
Assignment - 1	05	CO1, $\mathrm{CO} 2, \mathrm{CO}_{3}, \mathrm{CO}_{4}$	Assignment - 1	Assignment-1
Assignment - 2	05	CO5, CO6, CO7, CO8	Assignment - 2	Assignment - 2
Assignment - 3	05	CO9, CO10	Assignment - 3	Assignment - 3
Seminar - 1	05	CO1, CO2, CO3, CO4	Seminar - 1	Seminar - 1
Seminar-2	05	CO5, C06,C07,CO8	Seminar-2	Seminar-2
Seminar-3	05	CO9, CO10	Seminar-3	Seminar - 3
Other Activities - define - Slip test		CO1 to Cog	Other Activities - define - Slip test	
Final CIA Marks	40	-	-	

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction measurement of horizontal distances	Appr Time:	08 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the basics of surveying.	CO 1	L 2
2	learn the techniques of survey instruments	CO 2	L 2
\mathbf{b}	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Introduction and Definition of surveying	$\mathrm{C01}$	L 1
2	Objectives and importance of surveying	$\mathrm{C01}$	L 1

3	Classification of surveys. Principles of surveying. Units of measurements	C01	L2
4	Surveying Measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale	C01	L2
5	conventional symbols, topographic maps, map layout, Survey of India Map numbering systems	C01	L2
6	Measuring tape and types. Measurement using tapes	C01	L2
7	Taping on level ground and sloping ground. Errors and corrections in tape measurements	$\mathrm{Co2}$	-2
8	ranging of lines, direct and indirect methods of ranging, Electronic distance measurement	C02	L2
9	basic principle. Booking of tape survey work, Field book, entries	C02	L2
10	Conventional symbols, Obstacles in tape survey, Numerical problems	CO 2	L2
c	Application Areas	CO	Level
1	To investigate the ground nature in surveying	CO1	L2
2	Principles and techniques of surveying can be apply before any constructions.	CO 2	L2
d	Review Questions	-	-
1	Define surveying ? Write the principles of surveying.	CO 1	L1
2	Write and explain classifications of survey.	CO1	L2
3	Define errors, precision, accuracy	CO 2	L2
4	Define ranging ? Write and explain methods of ranging.	CO 2	L2
5	Write obstacles in chaining , ranging but not chaining.	CO 2	L2
6	A 20 M chain was found to be 10 cm too long after chaining a distance of 1500 m . It was found to be 18 cm too long at the end of days work after chaining total distance of 2900 . Find the true distance if the chain was correct before the commencement of the work.	CO 2	L2
e	Experiences	-	-
1			
2			
3			

Module - 2

Title:	Measurement of directions and angles: compass survey theodolite survey and instrument adjustment	Appr Time:	08 Hrs
a	Course Outcomes		Blooms
-	The student should be able to:		Level
1	Student should be able to determine the measurement of horizontal distances.	CO 3	L4
2	Student should be able to understand the practical applications of theodolite	CO 4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Basic definitions; meridians, bearings, magnetic and True bearings	C03	L2
2	Prismatic and surveyor's compasses	C03	L2
3	temporary adjustments, declination, Quadrantal bearings, whole circle bearings	C03	-2
4	local attraction and related problems. Theodolite and types	C04	L2
5	Fundamental axes and parts of Transit theodolite	C04	L3
6	uses of theodolite, Temporary adjustments of transit theodolite	C04	L3
7	measurement of horizontal and vertical angles	C 04	L3
8	step by step procedure for obtaining permanent adjustment of Transit theodolite	C04	L3
9	step by step procedure for obtaining permanent adjustment of Transit theodolite	C04	L3

10	Basic definitions; meridians, bearings, magnetic and True bearings, Prismatic and surveyor's compasses	Co4	L3
11	temporary adjustments, declination	C04	L3
c	Application Areas	CO	Level
1	Easy to measure the horizontal distances of any land.	CO_{3}	L2
2	Theodolite survey gives the accuracy and precision of work.	CO 4	L3
d	Review Questions	-	-
1	Give in a tabular form, the difference between prismatic compass and surveyors compass.	CO_{3}	L2
2	What is local attraction? How is it detected and eliminated?	CO_{3}	L2
3	The following are bearings taken on a closed traverse. compute the interior angles and correct them for observational errors. Assuming the observed bearings of the line C D to be adjust the bearing of the remaining sides.	CO_{3}	L2
4	With neat sketch fundamental lines and desired relations of transit theodolite.	CO 4	L2
5	Explain the temporary adjustments of transit theodolite.	CO 4	L2
e	Experiences	-	-

E1. CIA EXAM - 1
a. Model Question Paper - 1

	c	Explain the temporary adjustments of transit theodolite.		CO 4	L 2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.
Model Assignment Questions

Crs Code:	$18 C V 35$	Sem:	III	Marks:	10	Time:
Course:	Basic Surveying					

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1	1KT17CV101	Define surveying? Write the principles of surveying.	5	CO1	L2
2	1KT17CV102	Write and explain classifications of survey.	5	CO1	L2
3	1KT17CV103	Define errors, precision, accuracy	5	CO 2	L2
4	1KT17CV104	Define ranging? Write and explain methods of ranging.	5	CO 2	L3
5	1KT17CV105	Write obstacles in chaining , ranging but not chaining.	5	CO_{3}	L2
6	1KT17CV106	Give in a tabular form, the difference between prismatic compass and surveyors compass.	5	CO3	L2
7	1KT17CV107	What is local attraction? How is it detected and eliminated?	5	CO_{3}	L2
8	1KT17CV108	With neat sketch fundamental lines and desired relations of transit theodolite.	5	CO_{3}	L3
9	1KT17CV109	Explain the temporary adjustments of transit theodolite.	5	CO 4	L2
10	1KT17CV110	Enumerate the application of theodolite.	5	CO 4	L2

D2. TEACHING PLAN - 2

Module - 3

Title:	Traversing and Tacheometry	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to understand the techniques of compass survey	CO 5	L2
2	Student should be able to understand the methods of tacheometry survey	CO6	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Traverse Survey and Computations	CO 5	L2
2	Latitudes and departures, rectangular coordinates	CO_{5}	L2
3	Traverse adjustments, Traverse adjustments	CO 5	L2
4	Numerical Problems	CO_{5}	L3
5	Numerical Problems	CO_{5}	L3
6	basic principle, types of tacheometry	CO6	L2
7	distance equation for horizontal and inclined line of sight in fixed hair method	CO6	L2
8	distance equation for horizontal and inclined line of sight in fixed hair method	CO6	L2
9	Numerical Problems	CO6	L3
10	Numerical Problems	CO6	L3
C	Application Areas	CO	Level
1	Compass can be used for detailed measurement of bearings and directions on the fields.	CO 5	L3
2	Easy to identify the directions of land by using compass.	CO6	L3
d	Review Questions	-	-
1	Distinguish between chain survey and traverse surveying.	CO 5	L2
2	Briefly explain closed traverse and open traverse.	CO_{5}	L2
3	Explain clearly,with the help of illustrations, how traverse is balanced.	CO_{5}	L3
4	What are the different methods employed in tacheometric survey? Describe the method most commonly used.	CO6	L3

5	An observer standing on the deck of a ship just sees the top of light house which is 40 m above the sea level. If the height of the observer's eye is 8 m above theCO6 sea level, determine the distance of the observer from the light house			CO6	L3	
6	Two points A and B, 1530m apart are separated by a wide river. The following reciprocal levels were taken with one level:			CO 5	L3	
	Instrument at	Staff readings at				
		A	B			
	A	3.810m	2.165 m			
	B	2.355 m	0.910m			
	The collimation error was -0.0004 m per 100 m . Calculate the true level difference between A and B and the refraction.					
e	Experiences			-	-	
1						
2						
3						
4						
5						

Module - 4

Title:	Concrete mix Proportioning.	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to Analise the different methods of leveling using dumpy level	CO7	L4
2	Student should be able to Analise the detailed calculations of leveling by using dumpy level.	CO8	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Basic terms and definitions	CO7	L3
2	Methods of leveling, Dumpy level, auto level	CO7	L3
3	digital and laser levels. Curvature and refraction corrections	CO7	L3
4	Booking and reduction of levels, Differential leveling	CO7	L
5	profile leveling, fly leveling, check leveling	CO8	L4
6	check leveling, reciprocal leveling	CO8	L4
7	trigonometric leveling (heights and distances-single plane and double plane methods	CO8	L4
8	trigonometric leveling (heights and distances-single plane and double plane methods	CO8	L4
9	trigonometric leveling (heights and distances- double plane methods)	C08	L4
10	trigonometric leveling (heights and distances- double plane methods)	CO8	L4
c	Application Areas	CO	Level
1	To get the knowledge of ground profile.	CO7	L3
2	Before any constructions we can apply methods of leveling.	CO8	L4
d	Review Questions	-	-
1	Define leveling ? W/rite types of leveling.	CO7	L2
2	Illustrate with neat sketches i) Profile leveling ii) Differential leveling iii) Reciprocal leveling and	CO7	L3

E2. CIA EXAM - 2

a. Model Question Paper - 2

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18CV 35	Sem:	III	Marks:	10	Time:	$90-120$ minutes
Course:	Basic Surveying						
Note: Each student to answer 2-3	assignments. Each assignment carries equal mark.						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1	1KT17CV101	Distinguish between chain survey and traverse surveying.	5	CO6	L2
2	1KT17CV102	Briefly explain closed traverse and open traverse.	5	CO6	L3
3	1KT17CV103	Explain clearly,with the help of illustrations, how traverse is balanced.		CO7	L4
4	1KT17CV104	What are the different methods employed in tacheometric survey? Describe the method most commonly used.	5	CO7	L3
5	1KT17CV105	Distinguish between chain survey and traverse surveying.	5	CO 7	L3
6	1KT17CV106	Enumerate the errors in Leveling.	5	CO8	L3
7	1KT17CV107	illustrate with neat sketches i) Profile leveling ii) Differential leveling iii) Reciprocal leveling and iv) Block leveling		CO8	L3
8	1KT17CV108	Define sensitiveness of bubble tube. Describe the field procedure to determine the sensitiveness of bubble tube.	5	C08	L3
9	1KT17CV109	The following staff readings were observed successively with level, the instrument having been moved after the third,sixth and eighth readings: $2.228,1.606,0.988,2.090,2.864,1.262$, 0.602, 1.982, 1.044, 2.684, meters. Enter the above readings in a page of a level book and calculate the $R L$ of the points, if the first reading was taken with a staff held on a bench mark of 432.384 m .	5	CO8	L4

D3. TEACHING PLAN - 3

Module - 5

Title:	Areas and volumes Contouring	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the areas and volume by using arithmetic equations.	CO9	L2
2	Student should be able to understand the spatial data and uses of contours.	CO10	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Measurement of area - by dividing the area into geometrical figures	CO 9	L2
2	area from offsets, mid ordinate rule	CO 9	L3
3	trapezoidal and Simpson's one third rule, area from co-ordinates	CO9	L2
4	introduction to planimeter, digital planimeter	CO9	L3
5	Measurement of volumes-trapezoidal and prismoidal formula	CO10	L2
6	Contours, Methods of contouring	CO10	L3
7	Interpolation of contours, contour gradient	CO10	L2
8	characteristics of contours and uses	CO10	L3
9	Numerical Problems	CO10	L2
10	Numerical Problems	CO10	L3
c	Application Areas	CO	Level
1	With help of arithmetic equations to calculate the areas and volume of all type of land.	CO10	L3
2	By using contours easy to determine the storage capacity of water bodies.	CO9	L4
d	Review Questions	-	-
1	Define contour. List the uses of contour maps.	CO10	L2
2	Explain the characteristics of contours.	CO10	L3
3	Explain with neat sketch, the procedure for: i) Radiation method ii) Intersection method in plane table surveying	CO9	L3
4	What do you mean by orientation of plane table? Explain the different methods of orientation?	CO9	L4
5	Define Resection and hence state three point problem.	CO9	L2
6	Define the following : (i) Contour (ii) Contour interval (ii) Horizontal equivalent.	CO10	L3
7	List the characteristics of contour with the help of neat sketches.	CO10	L3
8	The following offsets were taken from a chain line to an irregular boundary line at an interval of 10 m . Compute the area by trapezoidal and Simpson's rule. Offsets: $0,2.5,3.5,5.0,4.6,3.2$ and 0 m .	CO10	L4
9	List the differences between polymer - impregnated concrete, polymer modified concrete, and polymer concrete.	C08	L2
10	What are the various quality control tests done to ensure good performance of polymer concrete?	C08	L2
e	Experiences	-	-
1		CO9	L2
2			
3			
4		CO10	L2
5			

E3. CIA EXAM - 3
a. Model Question Paper - 3

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs Code:	18CV35	Sem:	III	Marks:	10	Time:	$90-120$ minutes			
Course:	Basic surveying									

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1	1KT17CV101	Define contour. List the uses of contour maps.	5	CO 9	-2
2	1KT17CV102	Explain the characteristics of contours.	5	CO 9	L3
3	1KT17CV103	lain with neat sketch, the procedure for: i) Radiation method ii) Intersection method in plane table surveying		CO10	L4
4	1KT17CV104	What do you mean by orientation of plane table? Explain the different methods of orientation?	5	CO10	L3
5	1KT17CV105	Define Resection and hence state three point problem.	5	CO10	L3
6	1KT17CV106	Define the following : (i) Contour (ii) Contour interval (ii) Horizontal equivalent.	5	CO10	L3
7	1KT17CV107	List the characteristics of contour with the help of neat sketches.	5	CO10	L3
8	1KT17CV108	Define contour. List the uses of contour maps.	5	CO10	L3
9	1KT17CV109	Explain the procedure adopted to measure the distance between two mutually inaccessible points by plane table surveying.	5	CO10	L3
10	1KT17CV110	Describe the method of 'Resection' by 'Bessels graphical method".	5	CO10	L3

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Basic Surveying					Month / Year		Dec/19	
		18CV35	Sem:	III	Marks:	100			180 m	inutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.						Marks	CO	Level
1	a	How do you classify survey? Explain in detail.						8/20	CO 1	12
	b	Differentiate between : (i) Precision and Accuracy (ii) Plan and map						8		12

	C	The distance between two points measured along a slope is 265 m . Find the horizontal distance between them if, (i) the angle of slope is $4^{\circ} 42^{\prime}$ (ii) the difference in level is 27 m	4	CO 2	13
		OR			
2	a	Explain different types of chains and tapes.	10/20	CO1	12
	b	30 m chain was found to be 15 cm too long after chaining 1524 m . The same chain was found to 30.5 cm too long after chaining a total distance of 3048 m . Find the true distance chained assuming the chain was correct at the commencement of chaining.	10	CO 2	13
3	a	What is meant by plane table surveying? List the chain surveying equipments.	5/20	Co3	12
	b	What are offsets? Explain the types of offsets.	5		12
	c	In chaining past a pond, stations A and D on the main line were taken on the opposite sides of the pond. Two lines DB and DC measuring 250 m and 300 m were laid down to the left and right of the line AD. The points A, B and C are on the same line. $A B$ and $A C$ are measured and are found to be equal to 120 m and 130 m . Find the length of line AD.	10	CO 4	13
		OR			
4	a	Differentiate between the following : i) Open traverse and closed traverse (ii) W.C.B and Q.B (iii) Magnetic Dip and Declination (iv) Isogonic line and agonic line (v) Magnetic bearing and true bearing	15/20	CO 3	13
	b	During a closed traverse survey ABCDA, the following interior angles were measured with a compass $L A=75^{\circ}, L B=120^{\circ}, L C=80^{\circ}$ and $Z D=85^{\circ}$. If the bearing of the line $A B$ is 99°, what are the bearings of the remaining lines of the traverse?	5	CO 4	14
5	a	List the errors in compass surveying and explain.	8/20	CO 5	13
	b	With the help of neat sketches explain Bowditch graphical method of adjustment of closing error in a closed traverse.	8		14
	C	The magnetic bearing of a line is $105^{\circ} 30^{\prime}$. At that time of observation if magnetic declination is $6^{\circ} 15^{\prime} \mathrm{E}$, find the true bearing of the line. Also draw the relevant sketch.	4	CO6	14
6	a	Explain the following : (i) Balancing of sights (ii) Profile leveling	$6 / 20$	C07	12
	b	During fly leveling, the following readings were taken: B.S : 0.620, 2.050, 1.420, 2.630, and 2.420 F.S : 2.440, 1.350, 0.530, 2.410 The first B.S was taken on a B.M of R.L 100.000 metres. From the last B.S it is required to set 4 pegs each at distance of 30 metres on a rising gradient 1 in 200. Enter these readings in a level book form and calculate the R.L of the top of each peg by "Rise and Fall" method. Also calculate the staff reading on each peg and apply the usual checks.	14		14
		OR			
7	a	Define the following : (i) Contour (ii) Contour interval (iii) Horizontal equivalent	6/20	COg	12
	b	List the various important factors to be considered at the time of selecting the contour interval and explain.	6	COg	12
	C	List the characteristics of contour with the help of neat sketches.	8	CO10	12
8	a	What do you mean by plane tabling? List the plane table and its accessories.	5/20	CO10	14

	b	List the various important factors to be considered at the time of selecting the contour interval and explain.	$\mathrm{CO1O}$	l 4	
	c	List the characteristics of contour with the help of neat sketches.	9	CO 10	l 4

2. SEE Important Questions

5	1	Define contour. List the uses of contour maps.	$16 /$ 20	CO9	2014
	2	Explain the characteristics of contours.	$\mathrm{CO9}$	2016	
	3	Explain with neat sketch, the procedure for: i) Radiation method ii) Intersection method in plane table surveying	CO	2015	
	4	The following offsets were taken from a chain line to an irregular boundary line at an interval of 10m. Compute the area by trapezoidal and Simpson's rule. Offsets : O , 2.5, 3.5,5.0,4.6,3.2 and o m.	$\mathrm{CO10}$	2014	
	5	Define contour. List the uses of contour maps.	CO10	2014	

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo dul e\#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms' Learning Levels for Content	Final Bloo ms' Level	Identified Action Verbs for Learning	Instructi on Methods for Learning	Assessment Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Definition of surveying, Objectives and importance of surveying. Classification of surveys. Principles of surveying. Units of measurements, Surveying Measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale, conventional symbols, topographic maps, map layout, Survey of India Map numbering systems.	5	$\begin{aligned} & -\mathrm{L} 1 \\ & -\mathrm{L} 2 \end{aligned}$	L2		Lecture	- Slip Test
1	Measuring tape and types. Measurement using tapes, Taping on level ground and sloping ground. Errors and corrections in tape measurements, ranging of lines, direct and indirect methods of ranging, Electronic distance measurement, basic principle. Booking of tape survey work, Field book, entries, Conventional symbols, Obstacles in tape survey, Numerical problems.	5	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4		Lecture - Tutorial	Assignment
2	Basic definitions; meridians, bearings, magnetic and True bearings. Prismatic and surveyor's compasses, temporary adjustments, declination. Quadrantal bearings, whole circle bearings, local attraction and related problems.	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3		Lecture	Assignment
2	Theodolite and types, Fundamental axes and parts of Transit theodolite, uses of theodolite, Temporary adjustments of transit theodolite, measurement of horizontal and vertical angles, step by step procedure for obtaining permanent adjustment of Transit theodolite.	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 2 \end{aligned}$	L2		Lecture	Slip Test
3	Traverse Survey and Computations: Latitudes and departures, rectangular coordinates, Traverse adjustments, Bowditch rule and transit rule, Numerical Problems.	5	$\begin{aligned} & -\mathrm{L} 1 \\ & -\mathrm{L} 3 \end{aligned}$	L3		Lecture	Slip Test
3	Basic principle, types of tacheometry, distance equation for horizontal and inclined line of sight in fixed hair method, problems.	5	$\begin{aligned} & \text { - L3 } \\ & -\mathrm{L} 2 \end{aligned}$	L3		Lecture - Tutorial	Assignment
4	Basic terms and definitions, Methods of leveling, Dumpy level, auto level, digital and	5	$\begin{array}{r} \text { - L3 } \\ -\mathrm{L} 1 \\ \hline \end{array}$	L3		Lecture	Assignment

	laser levels. Curvature and refraction corrections. Booking and reduction of levels.					- Tutorial	
4	Differential leveling, profile leveling, fly leveling, check leveling, reciprocal leveling, trigonometric leveling (heights and distancessingle plane and double plane methods.	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 4 \end{aligned}$	L4		Lecture - Tutorial	Assignment
5	By dividing the area into geometrical figures, area from offsets, mid ordinate rule, trapezoidal and Simpson's one third rule, area from co-ordinates, introduction to planimeter, digital planimeter. Measurement of volumestrapezoidal and prismoidal formula.	5	$\begin{aligned} & -L 2 \\ & -L 2 \end{aligned}$	L2		Lecture	Assignment
5	Contours, Methods of contouring, Interpolation of contours, contour gradient, characteristics of contours and uses.	5	$\begin{aligned} & -L 2 \\ & -L 2 \end{aligned}$	L2		Lecture	Assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{gathered} \hline \mathrm{Mo} \\ \mathrm{dul} \\ \mathrm{e}- \\ \# \end{gathered}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	1	J	K	L	M	N
1			Introduction of basic instruments	Engineering knowledge of basics of surveying.	- Understand - basics of surveying.	understand the basics of surveying.
1	-		techniques	Engineering knowledge of basics of surveying	- basics of surveying -	learn the techniques of survey instruments.
2		-	Compass survey	Engineering knowledge of technics of surveying instruments	- technics of surveying	determine the measurement of horizontal distances.
2		-	Theodolite survey	Analyses of problems on chain surveying	- Understand - chain surveying	understand the practical applications theodolite
3		-	Traverse survey	Understanding the measurement of horizontal distances.	- Understand - measurement of horizontal distances.	\quad understand the techniques compass survey
3		-	Tacheometry survey	Analyses of problems on horizontal distances	- Apply horizontal distances	understand the methods of tacheometry survey
4		-	leveling	Understanding the practical applications of theodolite	- Apply - theodolite	Analise the different methods of leveling using dumpy level

COURSE PLAN - CAY 2019-20

5	-	leveling	Understanding the practical applications of theodolite	- Understand	- theodolite	Analise the detailed calculations of leveling by using dumpy level.
5			Computation s of areas and volume	Engineering knowledge of techniques of compass surveying	- Understand compass surveying come	determine the areas and volume by using arithmetic equations.

