Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year 2019-20

Program:	B E – CIVIL ENGINEERING
Semester :	3
Course Code:	18CV35
Course Title:	Basic Surveying
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	VINOD M

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	5
1. Course Outcomes	
2. Course Applications	5
3. Mapping And Justification	6
4. Articulation Matrix	6
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	7
C. COURSE ASSESSMENT	7
1. Course Coverage	7
2. Continuous Internal Assessment (CIA)	8
D1. TEACHING PLAN - 1	8
Module - 1	
Module – 2	9
E1. CIA EXAM – 1	10
a. Model Question Paper - 1	10
b. Assignment -1	
D2. TEACHING PLAN - 2	11
Module – 3	
Module – 4	
E2. CIA EXAM – 2	13
a. Model Question Paper - 2	
b. Assignment – 2	14
D3. TEACHING PLAN - 3	14
Module – 5	14
E3. CIA EXAM – 3	15
a. Model Question Paper - 3	15
b. Assignment – 3	16
F. EXAM PREPARATION	16
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	19
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL ENGINEERING
Semester:	3	Academic Year:	2019-20.
Course Title:	Basic Surveying.	Course Code:	15CV35.
Credit / L-T-P:	4 / 4-0-0.	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours.	SEE Marks:	60 Marks
CIA Marks:	40 Marks.	Assignment	1 / Module
Course Plan Author:	VINOD M.	Sign .	
Checked By:	MOHAN K T	Sign .	
CO Targets	65%	SEE Target:	60%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teaching	Identified	Blooms
ule		Hours	Module	Learning
			Concepts	Levels
1	Definition of surveying, Objectives and importance of surveying. Classification of surveys. Principles of surveying. Units of measurements, Surveying Measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale, conventional symbols, topographic maps, map layout, Survey of India Map numbering systems. Measuring tape and types. Measurement using tapes, Taping on level ground and sloping ground. Errors and corrections in tape measurements, ranging of lines, direct and indirect methods of ranging, Electronic distance measurement, basic principle. Booking of tape survey work, Field book, entries, Conventional symbols, Obstacles in tape survey, Numerical problems.	10	Introduction and importance of surveying Measurement of Horizontal Distances	L2,L4
2	Basic definitions; meridians, bearings, magnetic and True bearings. Prismatic and surveyor's compasses, temporary adjustments, declination. Quadrantal bearings, whole circle bearings, local attraction and related problems. Theodolite and types, Fundamental axes and parts of Transit theodolite, uses of theodolite, Temporary adjustments of transit theodolite, measurement of horizontal and vertical angles, step by step procedure for obtaining permanent adjustment of Transit theodolite.	10	Compass survey Theodolite survey	L2,L3
3	Traverse Survey and Computations: Latitudes and departures, rectangular coordinates, Traverse adjustments, Bowditch rule and transit rule, Numerical Problems. Basic principle, types of tacheometry, distance equation for horizontal and inclined line of sight in fixed hair method, problems.	10	Traverse survey Tacheometry survey	L2,L3
4	Basic terms and definitions, Methods of leveling, Dumpy level, auto level, digital and laser levels. Curvature and refraction corrections. Booking and reduction of levels. Differential leveling, profile leveling, fly leveling, check leveling, reciprocal leveling, trigonometric leveling (heights and distances-single plane and double plane methods.	10	leveling	L2,L4
5	By dividing the area into geometrical figures, area from offsets, mid ordinate rule, trapezoidal and Simpson's one third	10	Computations of Area	L2

	rule, area from co-ordinates, introduction to planimeter, digital planimeter, Measurement of volumes-trapezoidal and		and volume	
	prismoidal formula.		contouring	
	Contours, Methods of contouring, Interpolation of contours,			
	contour gradient, characteristics of contours and uses.			
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	B.C. Punmia, "Surveying Vol.1", Laxmi Publications pvt. Ltd., New DelhI	1,2,3,4,5	In Lib / In Dept
5	2009.		
1,2,3,4,	Kanetkar T P and S V Kulkarni , Surveying and Leveling Part I, Pune	1,2,3,4,5	In Lib⁄ In dept
5	Vidyarthi Griha Prakashan, 1988		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	.S.K. Duggal, "Surveying Vol.1", Tata McGraw Hill Publishing Co. Ltd. New		In Lib⁄ In dept
	Delhi. – 2009.		
	K.R. Arora, "Surveying Vol. 1" Standard Book House, New Delhi. – 2010		In Lib⁄ In dept
	R Subramanian, Surveying and Leveling, Second edition, Oxford		In Lib⁄ In dept
	University Press, New Delhi.		
С	Concept Videos or Simulation for Understanding	-	-
C1	http://nptel.ac.in/courses.php?disciplineID=111		
C2	http://www.khanacademy.org/		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

Module s	Course Code	Course Name	Topic / Descri	ption Sem	Remarks	Blooms Level

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

ModTopic / DescriptionAreaRemarksBlooms

ules		Level
1		
3		
3		
5		
-		
-		

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessm	Blooms'
ules	Code.#	At the end of the course, student	Hours		Metho	ent	Level
		should be able to			d	Method	
1	18cv35.1	Student should be able to	05	Introduction	Lecture	IA	L2
		understand the basics of surveying.		of basic			Understand
				instruments			
1	18cv35.2	Student should be able to learn the	05	techniques	Lecture	IA	L2
		techniques of survey instruments.					Understand
2	18cv35.3	Student should be able to	05	Compass	Lecture	IA	L3
		determine the measurement of		survey			Apply
		horizontal distances.					
2	18cv35.4	Student should be able to	05	Theodolite	Lecture	IA	L3
		understand the practical		survey			Apply
		applications of theodolite					
3	18cv35.5	Student should be able to	05	Traverse	Lecture	IA	L2
		understand the techniques of		survey			Understand
		compass survey					
3	18cv35.6	Student should be able to	05	lacheometry	Lecture	IA	L2
		understand the methods of		survey			Understand
<u> </u>	10	tacheometry survey	0.5	Laura Bia ai	1		
4	18CV35./	Student should be able to Analise	05	leveling	Lecture	IA	L4
		the different methods of leveling					Analise
	190005 9	Student should be able to Analice	05	lovoling	Locturo	1.0	
4	100035.0	the detailed calculations of leveling	05	leveling	Lecture		L4 Analiso
		by using dumpy level					Analise
5	1801/25.0	Student should be able to	05	Computation	Lecture		12
5	100/30.9	determine the areas and volume by	05	s of areas and	Lecture		Apply
		using arithmetic equations		volume			, ipply
5	18cv3510	Student should be able to	05	contouring			3
	100100.10	understand the spatial data and		- contouring			
		uses of contours.					
-	-	Total	10	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	To investigate the ground nature in surveying	CO1	L2
1	Principles and techniques of surveying can be apply before any constructions.	CO2	L2
2	Easy to measure the horizontal distances of any land.	CO3	L3
2	Theodolite survey gives the accuracy and precision of work.	CO4	L3
3	Compass can be used for detailed measurement of bearings and directions on the	CO5	L3

	fields.		
3	Easy to identify the directions of land by using compass.	CO6	L3
4	To get the knowledge of ground profile.	CO7	L2
4	Before any constructions we can apply methods of leveling.	CO8	L2
5	With help of arithmetic equations to calculate the areas and volume of all type of	CO9	L3
	land.		
5	By using contours easy to determine the storage capacity of water bodies.	CO10	L4

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Map	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	СО	CO PO -		'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
	CO1	PO1	L2	Engineering knowledge of basics of surveying.	L2
	CO1	PO2		Engineering knowledge of basics of surveying.	L2
	CO2	PO1	L2	Engineering knowledge of technics of surveying instruments	L2
	CO2	PO2	L2	Analyses of problems on chain surveying	L3
	CO3	PO1		Understanding the measurement of horizontal distances.	L3
	CO3	PO2	L5	Analyses of problems on horizontal distances	L4
	CO4	PO1	L5	Understanding the practical applications of theodolite	L2
	CO4	PO2		Understanding the practical applications of theodolite	L2
	CO5	PO1	L5	Engineering knowledge of techniques of compass surveying	L3
	CO5	PO2	L5	Analyses of problems on compass surveying	L4
	CO6	PO1		Engineering knowledge of methods of tacheometry surveying	L2
	CO6	PO2	L5	Analyses of problems on tacheometric surveying	L2
	CO7	PO1	L5	Engineering knowledge of different methods of leveling using dumpy level	L2
	C07	PO2		Analyses of problems on leveling	L4
	CO8	PO1	L5	Engineering knowledge of different methods of leveling using dumpy level	L3
	CO8	PO2	L5	Analyses of problems on leveling	L4
	CO9	PO1		Engineering knowledge of areas and volume by using arithmetic equations.	L3
	CO9	PO2	L5	Analyses of problems on areas and volume by using arithmetic equations.	L4
	CO10	PO1	L5	Understanding the knowledge of spatial data and uses of contours.	L3
	CO10	PO2		Understanding the knowledge of spatial data and uses of contours.	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes		Program Outcomes							-							
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	17CV44.1	Student should be able to	2	1	-	-	-	-	-	-	-	-	-	-	L2			L2
		understand the basics of	-															
		surveying.																
1	17CV44.2	Student should be able to learn	2	1	-	-	-	-	-	-	-	-	-	-	L3			L2
		the techniques of survey	r															
		instruments.																
2	17CV44.3	Student should be able to	2	2	-	-	-	-	-	-	-	-	-	-	L3			L2
		determine the measurement of																
		horizontal distances.																
2	17CV44.4	Student should be able to	3	3	-	-	-	-	-	-	-	-	-	-	L2			L2
		understand the practical	_															
		applications of theodolite																
3	17cv44.5	Student should be able to	3	2	-	-	-	-	-	-	-	-	-	-	L3			L3

		understand the techniques of compass survey								
3	17CV44.6	Student should be able to 2 2 L3 L3 understand the methods of tacheometry survey								
4	17CV44.7	Student should be able to 2 1 L5 L2 Analise the different methods of leveling using dumpy level								
5	17CV44.7	Student should be able to 3 2 L2 Analise the detailed calculations of leveling by using dumpy level.								
5	17cv44.8	Student should be able to 2 3 L3 determine the areas and volume by using arithmetic equations.								
5	17cv44.8	Student should be able to 2 2 L5 L4 understand the spatial data and uses of contours.								
-	CS501PC	Average attainment (1, 2, or 3) 2 1								
-	PO, PSO	Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 1.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning;								

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teachi		No. o	f quest		CO	Levels		
ules		ng	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
		Hours					Asg			
1	Introduction and measurement of	10	2	-	-	1	-	2	CO1, CO2	L2
	horizontal distances									
2	Measurement of directions and	10	2	-	-	1		2	CO3, CO4	L3
	angles compass surveying									
	Theodolite survey and instrument									
	adjustment									
3	Traversing and Tacheometry	10	-	2	-	1	1	2	CO5, CO6	L3
4	Leveling	10	-	2	-	1	1	2	CO7, C08	L4
5	Areas and volumes	10	-	1	3	1	1	2	CO9, CO10	L3
	contouring									
-	Total	50	4	5	3	5	3	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weighta	СО	Levels	Evaluation
	ge in			
	Marks			
CIA Exam – 1	40	CO1, CO2, CO3, CO4	CIA Exam – 1	CIA Exam – 1
CIA Exam – 2	40	CO5, CO6, CO7, C08	CIA Exam – 2	CIA Exam – 2
CIA Exam – 3	40	CO9, CO10	CIA Exam – 3	CIA Exam – 3
Assignment - 1	05	CO1, CO2, CO3, CO4	Assignment - 1	Assignment - 1
Assignment - 2	05	CO5, CO6, CO7, CO8	Assignment - 2	Assignment - 2
Assignment - 3	05	CO9, CO10	Assignment - 3	Assignment - 3
Seminar - 1	05	CO1, CO2, CO3, CO4	Seminar - 1	Seminar - 1
Seminar - 2	05	CO5, CO6,CO7,CO8	Seminar - 2	Seminar - 2
Seminar - 3	05	CO9, CO10	Seminar - 3	Seminar - 3
Other Activities		CO1 to Co9	Other Activities	
– define – Slip			– define – Slip	
test			test	
Final CIA Marks	40	-	-	

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction measurement of horizontal distances	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the basics of surveying.	CO1	L2
2	learn the techniques of survey instruments	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction and Definition of surveying	C01	L1
2	Objectives and importance of surveying	C01	L1

3	Classification of surveys. Principles of surveying. Units of measurements	C01	L2
4	Surveying Measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale	C01	L2
5	conventional symbols, topographic maps, map layout, Survey of India Map numbering systems	C01	L2
6	Measuring tape and types. Measurement using tapes	C01	L2
7	Taping on level ground and sloping ground. Errors and corrections in tape measurements	C02	L2
8	ranging of lines, direct and indirect methods of ranging, Electronic distance measurement	C02	L2
9	basic principle. Booking of tape survey work, Field book, entries	C02	L2
10	Conventional symbols, Obstacles in tape survey, Numerical problems	C02	L2
С	Application Areas	со	Level
1	To investigate the ground nature in surveying	CO1	L2
2	Principles and techniques of surveying can be apply before any constructions.	CO2	L2
d	Review Questions	-	-
1	Define surveying ? Write the principles of surveying.	CO1	L1
2	Write and explain classifications of survey.	CO1	L2
3	Define errors, precision, accuracy	CO2	L2
4	Define ranging ? Write and explain methods of ranging.	CO2	L2
5	Write obstacles in chaining , ranging but not chaining.	CO2	L2
6	A 20 M chain was found to be 10 cm too long after chaining a distance of 1500m. It was found to be 18cm too long at the end of days work after chaining total distance of 2900m. Find the true distance if the chain was correct before the commencement of the work.	CO2	L2
е	Experiences	-	-
1			
2			

Module – 2

		•						
l itle:	Measurement of directions and angles: compass survey	Appr	08 Hrs					
	theodolite survey and instrument adjustment	Time:						
a	Course Outcomes	-	Blooms					
-	The student should be able to:	-	Level					
1	Student should be able to determine the measurement of horizontal	CO3	L4					
	distances.							
2	Student should be able to understand the practical applications of theodolite	CO4	L3					
b	Course Schedule	-	-					
Class No	Class No Module Content Covered							
1	Basic definitions; meridians, bearings, magnetic and True bearings	C03	L2					
2	Prismatic and surveyor's compasses	C03	L2					
3	temporary adjustments, declination, Quadrantal bearings, whole circle bearings	C03	L2					
4	local attraction and related problems. Theodolite and types	C04	L2					
5	Fundamental axes and parts of Transit theodolite	C04	L3					
6	uses of theodolite, Temporary adjustments of transit theodolite	C04	L3					
7	measurement of horizontal and vertical angles	C04	L3					
8	step by step procedure for obtaining permanent adjustment of Transit theodolite	C04	L3					
9	step by step procedure for obtaining permanent adjustment of Transit theodolite	C04	L3					

10	Basic definitions; meridians, bearings, magnetic and True bearings, Prismatic and surveyor's compasses	C04	L3
11	temporary adjustments, declination	C04	L3
С	Application Areas	CO	Level
1	Easy to measure the horizontal distances of any land.	CO3	L2
2	Theodolite survey gives the accuracy and precision of work.	CO4	L3
d	Review Questions	-	-
1	Give in a tabular form, the difference between prismatic compass and	CO3	L2
2	What is local attraction? How is it detected and eliminated ?	CO3	L2
3	The following are bearings taken on a closed traverse.	CO3	L2
	Line F.B. B.B	Ũ	
	AB 80*10' 259*0*		
	BC 120* 20' 301*50'		
	CD 170*50' 350*50'		
	DE 230 [*] 10' 49 [*] 30'		
	EA 310*20' 139*15'		
	compute the interior angles and correct them for observational errors. Assuming the observed bearings of the line C D to be adjust the bearing of the remaining sides.		
4	With neat sketch fundamental lines and desired relations of transit theodolite.	CO4	L2
5	Explain the temporary adjustments of transit theodolite.	CO4	L2
е	Experiences	_	-

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code	18CV35	Sem:	111	Marks:	40	Time:	75 minute	es			
Cou	rse:	Basic Surve	eying									
-	-	Note: Ansv	wer any 1 d	questions f	rom each	module, e	each carry equ	al CO	Level	Marks		
		marks.										
		Module-1										
1	a	Define surv	eying ? Writ	e the princi	ples of surv	veying.		15	CO1	L1		
	b	Write obsta	Write obstacles in chaining , ranging but not chaining.									
	С	A 20 M cha	ain was foun	ning a distance	of	CO2	L3					
		1500m. It w	vas found to	b be 18cm t	oo long at	the end of	of days work af	er				
		chaining to	tal distance	e if the chain w	as							
		correct bef	ore the com									
2	a	Define ranging ? Write and explain methods of ranging.							CO2	L2		
	b	Give in a t	abular form	n, the differe	ence betw	een prisma	atic compass a	nd	CO3	L3		
		surveyors o										
	С	What is loc	alattraction	? How is it c	detected ar	nd eliminate	ed ?		CO3	L3		
3	a	The followi	ng are bear	ings taken c	on a closed	traverse.		15	CO3	L3		
		Line		F.B.		B.E	3					
		AB		80*10'		259*	0*					
		BC		120* 20'		301*	50'					
		CD		170*50'		350*	50'					
		DE		230* 10'		49*3	30'					
		EA		310*20'		139*	15'					
		compute t	he interior a	angles and	correct the	em for ob	servational erro	rs.				
		Assuming t	the observe	d bearings	of the line	C D to be a	adjust the beari	ng				
		of the rema	aining sides.							<u> </u>		
	b	With neat	sketch fur	ndamental	lines and	desired re	elations of tran	sit	CO4	L2		
		theodolite.										

С	Explain the temporary adjustments of transit theodolite.	CO4	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Mode	Model Assignment Questions									
Crs C	Code:	18CV35	Sem:	III	Marks:	10	Time:	90 - 120	minute	S
Cour	se:	Basic Su	urveying							
Note	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									
SNo	SNo USN Assignment Description Marks CO Level									
1	1KT17	′CV101	Define survey	ing ? Write t	the principle	es of surveyi	ng.	5	CO1	L2
2	1KT17	′CV102	Write and exp	lain classifi	cations of su	irvey.		5	CO1	L2
3	1KT17CV103 Define errors, precision, accuracy						5	CO2	L2	
4	1KT17	′CV104	Define ranging	g ? Write an	d explain m	ethods of ra	nging.	5	CO2	L3
5	1KT17	′CV105	Write obstacl	es in chainir	ng , ranging	but not chai	ning.	5	CO3	L2
6	1KT17	′CV106	Give in a ta	bular form	, the differ	ence betwe	en prismati	c 5	CO3	L2
			compass and	surveyors of	compass.					
7	1KT17	′CV107	What is local	attraction? I	How is it det	ected and e	liminated ?	5	CO3	L2
8	1KT17	'CV108	With neat ske	etch fundar	mental lines	and desire	d relations c	of 5	CO3	L3
transit theodolite.										
9	9 1KT17CV109 Explain the temporary adjustments of transit theodolite.						5	CO4	L2	
10	1KT17	′CV110	Enumerate th	e applicatio	on of theodo	lite.		5	CO4	L2

D2. TEACHING PLAN - 2

Module - 3

Title:	Traversing and Tacheometry	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to understand the techniques of compass survey	CO5	L2
2	Student should be able to understand the methods of tacheometry survey	CO6	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Traverse Survey and Computations	CO5	L2
2	Latitudes and departures, rectangular coordinates	CO5	L2
3	Traverse adjustments, Traverse adjustments	CO5	L2
4	Numerical Problems	CO5	L3
5	Numerical Problems	CO5	L3
6	basic principle, types of tacheometry	CO6	L2
7	distance equation for horizontal and inclined line of sight in fixed hair method	CO6	L2
8	distance equation for horizontal and inclined line of sight in fixed hair method	CO6	L2
9	Numerical Problems	CO6	L3
10	Numerical Problems	CO6	L3
С	Application Areas	СО	Level
1	Compass can be used for detailed measurement of bearings and directions on the fields.	CO5	L3
2	Easy to identify the directions of land by using compass.	CO6	L3
d	Review Questions	-	-
1	Distinguish between chain survey and traverse surveying.	CO5	L2
2	Briefly explain closed traverse and open traverse.	CO5	L2
3	Explain clearly, with the help of illustrations, how traverse is balanced.	CO5	L3
4	What are the different methods employed in tacheometric survey ? Describe	CO6	L3
	the method most commonly used.		

5	An observer standing on the which is 40m above the sea level. If the he level, determine the distance of the observer Two points A and B, 1530m	ne deck of a eight of the ol from the ligh apart are sep	ship just sees oserver's eye is nt house oarated by a w	the top of light house 8 8m above theCO6 sea vide river. The following	CO6 CO5	L3 L3			
	reciprocal levels were taken	with one leve	el :	5	Ũ	U			
	Instrument at	Staff readir	igs at	_					
		А	A B						
	A	<u>3</u> .810m	2.165m						
	В	2.355m	0.910m						
	The collimation error was difference between A and B	—0.0004m and the refra	per 100m. Ca ction.	alculate the true level					
е	Experiences				-	-			
1									
2									
3									
4									
5									

Module – 4

Title:	Concrete mix Proportioning.	Appr	08 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to Analise the different methods of leveling using	CO7	L4
	dumpy level		
2	Student should be able to Analise the detailed calculations of leveling by	CO8	L4
	using dumpy level.		
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Basic terms and definitions	C07	L3
2	Methods of leveling, Dumpy level, auto level	CO7	L3
3	digital and laser levels. Curvature and refraction corrections	C07	L3
4	Booking and reduction of levels, Differential leveling	CO7	L
5	profile leveling, fly leveling, check leveling	CO8	L4
6	check leveling, reciprocal leveling	CO8	L4
7	trigonometric leveling (heights and distances-single plane and double plane methods	CO8	L4
8	trigonometric leveling (heights and distances-single plane and double plane methods	CO8	L4
9	trigonometric leveling (heights and distances- double plane methods)	CO8	L4
10	trigonometric leveling (heights and distances- double plane methods)	CO8	L4
С	Application Areas	СО	Level
1	To get the knowledge of ground profile.	C07	L3
2	Before any constructions we can apply methods of leveling.	CO8	L4
d	Review Questions	-	-
1	Define leveling ? Write types of leveling.	C07	L2
2	Illustrate with neat sketches :	CO7	L3
	i) Profile leveling		
	ii) Differential leveling		
	iii) Reciprocal leveling and		

	iv) Block leveli	ng							
3	List and expla	in the temporary adju	stments of a dump	y level		CO8	L3		
4	Two points A reciprocal leve	and B are 1530 m Is are taken with one	apart across a wid level.	de river. The fol	lowing	CO8	L4		
	Level @	Reading A	on B (M)						
	A	2.165	3.180						
	B	0.910	2.355						
	The error in the Calculate the t	ne Collimation adjust rue difference of leve	ments of the level Is between A and B	is —0.004m in and the refractic	100 m. •n.				
5	Enumerate the	errors in Leveling.				CO8	L4		
6	The following instrument hav 1.606, 0.988, 2. Enter the abov points, if the 1 432.384 m.	trument having been moved after the third,sixth and eighth readings: 2.22 06, 0.988, 2.090, 2.864, 1.262, 0.602, 1.982, 1.044, 2.684, meters. ter the above readings in a page of a level book and calculate the R L of th ints, if the first reading was taken with a staff held on a bench mark of 2.384 m.							
7	Define sensiti determine the	veness of bubble sensitiveness of bubl	tube. Describe th ole tube.	ne field proced	ure to	CO8	L3		
8	Find the elevat	ion of the top of the o	chimney from the fo	llowing data:		CO8	L4		
	Inst Station	Reading on BM (m)	Angle of elevation	remarks					
	A	0.865	18*36'	RL of BM = 421.380m					
	В	1.225	10*12'	Distance AB = 50m					
	Stations A, B chimney.	and top of chimne	y are in the same	vertical plane.	Station				
е	Experiences					-	-		
1									
2									
3									
4									
5	1								

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	18cv35	Sem:		Marks:	40	Time:	75 minute	S	
Cou	rse:	Basic Surve	ying							
-	-	Note: Answ	er any 2 qu	estions, ead	ch carry eq	ual marks.		Marks	СО	Level
1	а	Distinguish I	between cl	nain survey a	and traverse	e surveying.		15	CO5	L1
	b	Briefly expla	ain closed t	raverse and	open trave	rse.				L2
	С	Two points following re	A and B, ciprocal lev	1530m apar /els were tal	rt are sepai ken with on	rated by a v e level :	wide river. T	he	CO6	L3
		Instrume	nt at							
				А	E	3				
		A		3.810m	2.16	5m				
		В		2.355m	0.91	.0m				
		The collima difference b	The collimation error was —0.0004m per 100m. Calculate the true level difference between A and B and the refraction.							
2	a	What are the different methods employed in tacheometric survey Describe the method most commonly used.							C07	L2
	b	An observe house whic	er standing h is 40m a	ht r's		L4				

٦

		eye is 8m abc from the light I	ove the sea level, de nouse	termine the distanc	e of the observe	r					
3	a	illustrate with i) Profile leveli ii) Differential l iii) Reciprocal iv) Block level	neat sketches : ng eveling leveling and ing			15	CO8	L2			
	b	Find the eleval	Id the elevation of the top of the chimney from the following data:								
		Inst Station	Reading on BM (m)	Angle of elevation	remarks						
		A	0.865	18*36'	RL of BM = 421.380m						
		В	B 1.225 10*12' Distance AB = 50m								
		Stations A, B a chimney.	and top of chimney a	re in the same vert	ical plane. Station	ו					

b. Assignment – 2

Note: A distinct assignment to be assigned to each student. Model Assignment Questions

				1410	JuerAssignment	Quesi	.10115					
Crs C	code:	18CV35	Sem:		Marks:	10	Time:	90 - 120	0 – 120 minutes			
Cours	se:	Basic Su	irveying									
Note	Each	student	to answer 2	2-3 assign	ments. Each assi	gnmer	nt carries equal mai	rk.				
SNo		USN		Α	ssignment Desc	riptio	n	Marks	СО	Level		
1	1KT17	′CV101	Distinguish	ı betweer	i chain survey an	d trave	erse surveying.	5	CO6	L2		
2	2 1KT17CV102 Briefly explain closed traverse and open traverse.						5	CO6	L3			
3	3 1KT17CV103 Explain clearly, with the help of illustrations, how traverse is balanced.						S	C07	L4			
4	1KT17CV104What are the different methods employed in tacheometric survey ? Describe the method most commonly used.						c 5	C07	L3			
5	1KT17	7CV105	Distinguish	ı betweer	ı chain survey an	d trave	erse surveying.	5	CO7	L3		
6	6 1KT17CV106 Enumerate the errors in Leveling.						5	CO8	L3			
7	1KT17CV107 illustrate with neat sketches : i) Profile leveling ii) Differential leveling iii) Reciprocal leveling and iv) Block leveling					CO8	L3					
8	1KT17	7CV108	Define se procedure	nsitivenes to detern	ss of bubble t nine the sensitive	ube. ness d	Describe the field of bubble tube.	d 5	CO8	L3		
9	1KT17	7CV109	The follow level, the i and eighth 0.602, 1.98. Enter the calculate t with a staff	ing staff r nstrumen 1 reading 2, 1.044, 2 above re he R L of held on a	eadings were ok at having been n s: 2.228, 1.606, (684, meters. eadings in a pa f the points, if th a bench mark of 4	oserve noved 0.988, ge of le first 132.38	d successively with after the third,sixth 2.090, 2.864, 1.262 a level book and reading was taken 4 m.	1 5 1 2. d	CO8	L4		

D3. TEACHING PLAN - 3

Module – 5

Title:	Areas and volumes Contouring	Appr Time:	08 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to determine the areas and volume by using arithmetic equations.	CO9	L2
2	Student should be able to understand the spatial data and uses of contours.	CO10	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Measurement of area – by dividing the area into geometrical figures	CO9	L2
2	area from offsets, mid ordinate rule	CO9	L3
3	trapezoidal and Simpson's one third rule, area from co-ordinates	CO9	L2
4	introduction to planimeter, digital planimeter	CO9	L3
5	Measurement of volumes-trapezoidal and prismoidal formula	CO10	L2
6	Contours, Methods of contouring	CO10	L3
7	Interpolation of contours, contour gradient	CO10	L2
8	characteristics of contours and uses	CO10	L3
9	Numerical Problems	CO10	L2
10	Numerical Problems	CO10	L3
С	Application Areas	CO	Level
1	With help of arithmetic equations to calculate the areas and volume of all type of land.	CO10	L3
2	By using contours easy to determine the storage capacity of water bodies.	CO9	L4
d	Review Questions	-	-
1	Define contour. List the uses of contour maps.	CO10	L2
2	Explain the characteristics of contours.	CO10	L3
3	Explain with neat sketch, the procedure for:	CO9	L3
	i) Radiation method ii) Intersection method in plane table surveying		-
4	What do you mean by orientation of plane table? Explain the different methods of orientation?	COg	L4
5	Define Resection and hence state three point problem.	CO9	L2
6	Define the following :	CO10	L3
	Lict the characteristics of contour with the hole of next sketches	CO10	10
/	The following effects were taken from a chain line to an irregular boundary line	CO10	L3
0	at an interval of 10m. Compute the area by trapezoidal and Simpson's rule. Offsets : 0 , 2.5 , 3.5 , 5.0 , 4.6 , 3.2 and 0 m.	010	L4
9	List the differences between polymer – impregnated concrete, polymer – modified concrete, and polymer concrete.	CO8	L2
10	What are the various quality control tests done to ensure good performance of polymer concrete?	CO8	L2
	E-manian and a		
e	Experiences	-	-
1		009	L2
2			
3		0010	
4		0100	L2
1 5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	18CV35	Sem:	III	Marks:	15	Time:	75 minute	S	
Cour	rse:	Basic Surve	eying							
-	-	Note: Answ	er any 2 qu	estions, ead	ch carry equ	ıal marks.		Marks	СО	Level
1	а	Define cont	our. List the	uses of cor	ntour maps.			15	CO9	L2
	b	Explain the	characterist	ics of contc	ours.				CO9	L2
	С	lain with ne	at sketch, th			CO9	L3			
		i) Radiation	method ii) Ir	ntersection	method in p	lane table su	ırveying			
2	а	List the cha	aracteristics	tches.	15	CO10	L2			
	b	The follow	ing offsets	were take	n from a	chain line t	o an irregul	.ar	CO10	L4
		boundary li	ne at an inte	erval of 10m	n. Compute	the area by t	rapezoidal ar	nd		
		Simpson's r	ule. Offsets	0,2.5,3.5	, 5.0 , 4.6 , 3.	2 and 0 m.				
3	а	What do y	ou mean by	 orientation 	n of plane t	able? Explai	n the differe	nt 15	CO9	L2
		methods of	orientation?							
	b	Define Rese	ection and h	ence state t	hree point p	problem.			CO10	L2
	С	Define the f	following :			CO10	L2			
		(i) Contour	(ii) Contour	nterval	(ii) Horizonta	l equivalent.				

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	18CV35	Sem:	111	Marks:	10	Time:	90 - 120	minutes	5	
Cours	se:	Basic su	irveying								
Note	: Each	student	to answer 2-3	assignmer	nts. Each assig	gnment car	ries equal ma	ark.			
SNo		USN		Assig	gnment Desc	ription		Marks	СО	Level	
1	1KT17	7CV101	Define conto	ur. List the	uses of conto	ur maps.		5	CO9	L2	
2	1KT17	7CV102	Explain the c	haracteristi	cs of contour	S.		5	CO9	L3	
3	1KT17	7CV103	lain with nea	t sketch, the	e procedure f	or:			CO10	L4	
			i) Radiation	method ii)	Intersection	method i	n plane tab	le			
			surveying								
4	1KT17	7CV104	What do you	l mean by	orientation of	^F plane tabl	.e? Explain th	ie 5	CO10	L3	
			different met	hods of orie	entation?						
5	1KT17	7CV105	Define Resea	ction and he	ence state thr	ee point pr	oblem.	5	CO10	L3	
6	1KT17	7CV106	Define the fo	llowing :				5	CO10	L3	
			(i) Contour (ii) Contour i	nterval (ii)	Horizontal	equivalent.				
7	1KT17	7CV107	List the ch	naracteristic	s of contou	r with the	help of nea	at 5	CO10	L3	
			sketches.								
8	1KT17	7CV108	Define conto	ur. List the	uses of contc	ur maps.		5	CO10	L3	
9	1KT17	7CV109	Explain the	procedure	adopted to	measure	the distanc	e 5	CO10	L3	
			between tw	o mutually	inaccessible	e points b	y plane tab	le			
			surveying.								
10	1KT17	7CV110	Describe the	e method	of 'Resectio	n' by 'Bes	sels graphic	al 5	CO10	L3	
			method".								

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Basic Surveying	g				Month J	/ Year	Dec/1	9
Crs C	ode:	18CV35	Sem:	111	Marks:	100	Time:		180 m	inutes
-	- Note Answer all FIVE full questions. All questions carry equal marks.						Marks	СО	Level	
1	a	How do you cla	w do you classify survey? Explain in detail.							
	b	Differentiate be	etween :					8		l2
		(i) Precision and	Precision and Accuracy							
	(ii) Plan and map									

	С	The distance between two points measured along a slope is 265 m. Find the horizontal distance between them if, (i) the angle of slope is 4° 42' (ii) the difference in level is 27m	4	CO2	l3
		OR			
2	а	Explain different types of chains and tapes.	10/ 20	CO1	l2
	b	30 m chain was found to be 15 cm too long after chaining 1524 m. The same chain was found to 30.5 cm too long after chaining a total distance of 3048 m. Find the true distance chained assuming the chain was correct at the commencement of chaining.	10	CO2	l3
3	а	What is meant by plane table surveying? List the chain surveying equipments.	5/ 20	C03	l2
	b c	What are offsets? Explain the types of offsets. In chaining past a pond, stations A and D on the main line were taken on the opposite sides of the pond. Two lines DB and DC measuring 250 m and 300 m were laid down to the left and right of the line AD. The points A, B and C are on the same line. AB and AC are measured and are found to be equal to 120 m and 130 m. Find the length of line AD.	5 10	CO4	ໄ2 ໄ3
		OR			
4	a	Differentiate between the following : i) Open traverse and closed traverse (ii) W.C.B and Q.B (iii) Magnetic Dip and Declination (iv) Isogonic line and agonic line (v) Magnetic bearing and true bearing	15/ 20	CO3	l3
	b	During a closed traverse survey ABCDA, the following interior angles were measured with a compass LA = 75°, LB = 120°, LC = 80° and ZD = 85°. If the bearing of the line AB is 99°, what are the bearings of the remaining lines of the traverse?	5	CO4	l4
	2	List the errors in compass survey ing and evrolain	9 (20	CO5	
5	b	With the help of neat sketches explain Bowditch graphical method of adjustment of closing error in a closed traverse.	8	005	l3 l4
	С	The magnetic bearing of a line is 105° 30'. At that time of observation if magnetic declination is 6° 15' E, find the true bearing of the line. Also draw the relevant sketch.	4	CO6	l4
6	а	Explain the following : (i) Balancing of sights (ii) Profile leveling	6 / 20	C07	l2
	b	During fly leveling, the following readings were taken: B.S : 0.620, 2.050, 1.420, 2.630, and 2.420 F.S : 2.440, 1.350, 0.530, 2.410 The first B.S was taken on a B.M of R.L 100.000 metres. From the last B.S it is required to set 4 pegs each at distance of 30 metres on a rising gradient 1 in 200. Enter these readings in a level book form and calculate the R.L of the top of each peg by "Rise and Fall" method. Also calculate the staff reading on each peg and apply the usual checks.	14		l4
7	2	Define the following :	6/20	<u> </u>	12
	d	(i) Contour (ii) Contour interval (iii) Horizontal equivalent	07 20	CUY	ιz
	b	List the various important factors to be considered at the time of selecting the contour interval and explain.	6	CO9	l2
	С	List the characteristics of contour with the help of neat sketches.	8	CO10	l2
8	a	What do you mean by plane tabling? List the plane table and its accessories.	5/ 20	CO10	l4

b	List the various important factors to be considered at the time of	6	CO10	l4
	selecting the contour interval and explain.			
С	List the characteristics of contour with the help of neat sketches.	9	CO10	l4

2. SEE Important Questions

Course:		Basic Surveyin	g		Mor	nth / Year	Dec/1	9
Crs C	ode:	18CV35	Sem: III	I Marks: 100 Time:		e:	180 m	inutes
	Note	Answer all FIVI	E full questions. All	questions carry equa	l marks.	-	-	
Mod	Qno.	Important Que	stions			Marks	s CO	Year
ule								
1	1	Distinguish bet	ween plane surve	ying and Geodetic sur	veying.	5/20	CO1	2016
	2	Explain the ter	6	CO2	2016			
	3	A 30 meter ch	hain was tested be	fore the commencer	nent of day's w	ork 4	CO2	2016
		found to be h	a lo de correct. A	long At the end of th	iins, the chain v	vas ftor		
		chaining anoth	er 100 chains the	chain was found to be	one decimeter	too		
		long. What was	s the total true dist	ance chained?				
	4	Define surveyir	ng ? Write the princ	ciples of surveying.		2	CO2	2015
	5	Write and expl	ain classifications of	of survey.		3	CO2	2015
				,				
2	1	State the imp	ortant points cons	idered while selectin	ig main stations	5 in 16 /	CO3	2015
		surveying.				20		
	2	With neat sket	ch, explain recipro	cal ranging.			CO3	2015
	3	What is local a	ttraction? How is it	detected and elimina	ted ?		CO3	2014
	4	with neat ske	etch fundamental	lines and desired i	relations of trai	nsit	C04	2016
	5	Explain the ten	nporary adjustme	nts of transit theodolite			CO4	2014
	5						004	2014
3	1	With a neat ske	etch, explain the w	orking of prism square	<u>).</u>	16 /	CO5	2015
			·	0 · · ·		20		
	2	Define: i) Surve	ey lines ii) Che	ck lines iii) Tie l	ines		CO5	2016
	3	Briefly explain	closed traverse an	d open traverse.			CO5	2017
	4	Explain clearly	with the help of ill	ustrations, how travers	se is balanced.		CO6	2017
	5	What are the	different method	is employed in tach	eometric surve	y ?	CO6	2016
		Describe the fi	iethoù most comm	ionty used.				
	1	illustrate with	neat sketches			16 /	C07	2017
	-	i) Profile leveli	ng	ii) Different	ial leveling	20		
		iii) Reciprocal I	leveling and	iv) Block	leveling			
	2	List and explai	n the temporary ac	ljustments of a dumpy	/ level		CO7	2014
	3	Find the eleva	tion of the top of th	ne chimney from the f	ollowing data		CO8	2015
						1		
		Inst Station Reading on BM (m) Angle of elevation remarks						
		A 0.865 18*36' RL of BM =						
		421.380m						
		B 1.225 10*12' Distance						
		AB = 50m						
		Stations A, B and top of chimney are in the same vertical plane. Station						
		chimney.						
	4	What is local a	attraction? How is i	t determined and elim	inated?		C08	2014
	5	Define :					C08	2015
		i) Dependent c	o-ordinates					
		III) Independent	co-ordinates					

5	1	Define contour. List the uses of contour maps.	16 /	CO9	2014
			20		
	2	Explain the characteristics of contours.		CO9	2016
	3	Explain with neat sketch, the procedure for:		CO	2015
		i) Radiation method ii) Intersection method in plane table surveying			
	4	The following offsets were taken from a chain line to an irregular		CO10	2014
		boundary line at an interval of 10m. Compute the area by trapezoidal and			
		Simpson's rule. Offsets : 0 , 2.5 , 3.5 , 5.0 , 4.6 , 3.2 and 0 m.			
	5	Define contour. List the uses of contour maps.		CO10	2014

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	E	F	G	Н
1	Definition of surveying, Objectives and	5	- L1	L2	-	-	- Slip Test
	importance of surveying. Classification of		- L2		-	Lecture	-
	surveys. Principles of surveying. Units of					-	-
	measurements, Surveying Measurements and					-	
	errors, types of errors, precision and accuracy.						
	Classification of maps, map scale,						
	man layout, Survey of India Man numbering						
	evetoms						
1	Measuring tape and types Measurement	5	-12		_	_	_
1	using tapes. Taping on level ground and	. 5	- 1 4	L4	_	Lecture	Assianment
	sloping ground Errors and corrections in tape		-4			- Tutorial	-
	measurements, ranging of lines, direct and					-	_
	indirect methods of ranging. Electronic						
	distance measurement, basic principle.						
	Booking of tape survey work, Field book,						
	entries, Conventional symbols, Obstacles in						
	tape survey, Numerical problems.						
2	Basic definitions; meridians, bearings,	5	- L2	L3	-	-	-
	magnetic and True bearings. Prismatic and		- L3		-	Lecture	Assignment
	surveyor's compasses, temporary	r				-	-
	adjustments, declination. Quadrantal	-					
	bearings, whole circle bearings, local						
	attraction and related problems.	_					Cline To at
2	I neodolite and types, Fundamental axes and	5	- L2	L2	-	-	- Sup Test
	parts of transit theodolite, uses of theodolite,		- L2		-	Lecture	-
	measurement of horizontal and vertical					-	
	angles step by step procedure for obtaining	•					
	permanent adjustment of Transit theodolite.						
3	Traverse Survey and Computations: Latitudes	5	- L1	L3	-	-	- Slip Test
	and departures, rectangular coordinates,		- L3		_	Lecture	-
	Traverse adjustments, Bowditch rule and					-	
	transit rule, Numerical Problems.						
3	Basic principle, types of tacheometry,	5	- L3	L3	-	-	-
	distance equation for horizontal and inclined		- L2		-	Lecture	Assignment
	line of sight in fixed hair method, problems.					- Tutorial	-
						-	-
4	Basic terms and definitions, Methods of	5	- L3	L3	-	-	-
	leveling, Dumpy level, auto level, digital and		- L1		-	Lecture	Assignment

Copyright ©2017. cAAS. All rights reserved.

	laser levels. Curvature and refraction corrections. Booking and reduction of levels.					- Tutorial -	-
4	Differential leveling, profile leveling, fly	5	- L2 - L4	L4	-	- Lecture	- Assianment
	trigonometric leveling (heights and distances- single plane and double plane methods.					- Tutorial -	- -
5	By dividing the area into geometrical figures, area from offsets, mid ordinate rule, trapezoidal and Simpson's one third rule, area from co-ordinates, introduction to planimeter, digital planimeter. Measurement of volumes- trapezoidal and prismoidal formula.	5	- L2 - L2	L2	-	- Lecture -	- Assignment - -
5	Contours, Methods of contouring, Interpolation of contours, contour gradient, characteristics of contours and uses.	5	- L2 - L2	L2	-	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

						1
Mo	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
dul	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	1	J	K	L	M	N
1	-	-	Introduction	Engineering	- Understand	understand the
	-	-	of basic	knowledge of	- basics of	basics of surveying.
			instruments	basics of surveying.	surveying.	
					-	
					-	
1	-	-	techniques	Engineering	- basics of	learn the
	-	-		knowledge of	surveying	techniques of survey
				basics of surveying.	-	instruments.
2	-	-	Compass	Engineering	- technics of	determine the
	-	-	survey	knowledge of	surveying	measurement of
				technics of		horizontal distances.
				surveying		
				instruments		
2	-	-	Theodolite	Analyses of	- Understand	understand the
	-	-	survey	problems on chain	- chain surveying	practical
				surveying	-	applications of
						theodolite
3	-	-	Traverse	Understanding the	- Understand	understand the
	-	-	survey	measurement of	- measurement of	techniques of
				horizontal	horizontal distances.	compass survey
				distances.		
3	-	-	Tacheometry	Analyses of	- Apply	understand the
	-	-	survey	problems on	horizontal distances	methods of
				horizontal distances	-	tacheometry survey
					-	
4	-	-	leveling	Understanding the	- Apply	Analise the different
	-	-		practical	- theodolite	methods of leveling
				applications of		using dumpy level
				theodolite		

COURSE PLAN - CAY 2019-20

5	-	-	leveling	Understanding the	- Understand	Analise the detailed
	-	-		practical	- theodolite	calculations of
				applications of		leveling by using
				theodolite		dumpy level.
5			Computation	Engineering	- Understand	determine the areas
			s of areas and	knowledge of	- techniques of	and volume by using
			volume	techniques of	compass surveying	arithmetic
				compass surveying		equations.